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SUMMARY : Néé'l/éyy/

The application of the point-matching method to three-dimensional
problems is formulated in this report, [nvestigations are started from the
scattering of plane waves by accoustically soft and hard bodies of revolution.
Due to the symmetry of the scatterer, the incident wave is expanded in
Fourier series of azimuth angle. A number of systems of simultaneous inhomo-
geneous algebraic equations is necessary to obtain a solution. Each of these
systems of equations is quite similar to that of the two dimensional problem.
The accpustic formulation is extended to obtain the soluticn for scattering
of electromagnetic plane waves by perfectly conducting rotational symmetric
bodies. In this case, the boundary conditions consist of two tangential com-
ponents of the electric field whichvanish at the surface of the scatterer.

However, the resultant equations are in the same form as in the accoustic

Authe

problem.
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1. INTRODUCTION:

The point-matching method has been applied in many areas of

engineering science during recent yecrs] -6; Most of these applications
. are two-dimensional eigenvalue problems. A finite number of points
around the periphery of the boundary in question are chosen such that

these points describe the boundary contour approximately™’

. By
utilizing a computer, this method can easily produce many practical
solutions to the eigenvalue problem and similar types of problems. For
example, all hollow-piped waveguides within the limitations posted in
Ref.[6] can be solved by the same computer program. However, for
three-dimensional problems, many more points are necessary to describe
the surface of the body under consideration. The huge number of
algebraic equations required in some systems may be beyond the capacity
of the present computers. But, this difficulty can be overcome for
rotational symmetric bodies which are frequently confronted in practical
applications. The problem of scattering by bodies of revolution will be
investigated by the point-matching method in this paper. The three-
dimensional problem is reduced to several problems similar to those of
two-dimensional cases. This reduction is due to the rotational symmetry
of th lin-
drical modes.

In the following considerations, the scalar plane wave scattering
by accoustically soft and hard bodies of revolution will be investigated
first. This case is quite similar to the two-dimensional scattering
problem2 _4. From accoustic formulations it is easy to see the basic
principles of the point-matching method in three-dimensional problems.

Practical approximate solutions can be obtained if this method is applied

to rotationally symmetric bodies of smooth contour which are not a gross



deviation from a semi-circle. The scattering of electromagnetic wave by
perfectly conducting bodies of revolution will be considered next. The
formulation is more complicated, however, the basic principle and the
applicability of the method are similar to those of accoustics. The scat-
tering properties are determined by the polarization and the propagation
direction of the incident plane wave as well as the shape of the scatterer.
Since any arbitrarily polarized plane wave can be resolved into two
components namely: the transverse electric (TE) and the transverse magnetic
(TM) polarizations with respect to the symmetric axis of the body, the
scattering of TE and TM waves can be considered separately without loss
of the generality. The total scattered fields of an arbitrarily polarized
plane wave are simply the superposition of the TE and the TM solutions.

In all cases, the method takes its starting point in the resolution
of the incident wave functions into cylindrical modes which are the terms
of the Fourier expansion with respect to the azimuth angle of the incident
wave function. The scattered field is expressed in the form of the general
spherical harmonic solution with specification of outgoing wave. The
point -matching technique is applied to the boundary conditions for terms
of the same azimuth variation. Then, the problem is approximated by a
finite number of systems of linear inhomogeneous algebraic equations which
can be solved by a computer in the same routine. With the knowledge of
the scattered fields, all scattering properties can be evaluated easily. The
expressions for the total scattered power and the total scattering cross section
are quite simple. In the case of nose on scattering, the problem reduces to

only one system of equations.



2. BACKGROUND:

The scatterer under consideration is a body of revolution which
encloses the origin of the coordinate system as shown in Fig. 1. In
accoustics, the body is either soft or hard. For scattering of electro-
magnetic waves, the body is made of perfectly conducting material.

Without loss of generality, the incident wave may be assumed to be
propagating in the direction 6= 6, and ¢ =0; where 8 and ¢

are the spherical coordinates with z axis colinear with the symmetric
axis of the body. The incident accoustic plane wave is a scalar

quantity while the incident electromagnetic plane wave is a vector.

Any arbitrarily polarized plane wave can be resolved into two components:
one polarized with electric field perpendicular to the plane of incidence;
and the other polarized with electric field parallel to the plane of incidence.
With respect to the z-axis, the symmetric axis of the body, the perpen-
dicular polarization is a transverse electric (TE) wave while the parallel
polarization is a transverse magnetic (TM) wave. For simplicity, the
scattering of the TE and the TM waves are considered separately. The
scattering properties of the arbitrarily polarized plane waves are simply
the superposition of these two solutions.

To simplify the analysis, the unit vectors ¥, and 3 (see Fig. 2)
of the orthogonal coordinate system of the scatterer will be introduced.

Their relationship to the Cartesian unit vectors are as follows:

N A . A
X siha Cos ¢ + y sina sth ¢ + Z cos a

A N . AN,
X COS O COS o+ Yy €COST sin¢ - ZsIn QO %))

D> <> ¢
1l

= =X sin ¢+')) cos ¢

-1 A A . . A A
where o =cos (U . Zz) isthe angle between unit vectors U and Zz.
Using the conventional symbols (r, 8, ¢) for the spherical coordinate
system, it is easy to show that

=0 cos(p -a) +7 sin(@ -o)
%: -0 sin(g <) + v cos(@ -q) (2)



P
Note that whena = g , 0 and v are reduced to be T and @ , and the
scatterer becomes a sphere. By means of relationships, (1) and (2), trans- ‘
formations of the coordinate components of a vector among the Cartesian,

spherical and the (u, v, ¢) coordinate systems are given by
AU =Ax sina cos ¢ + Ay sina sin¢ + AZ cos a

= Ar cos(@ -a) = A_ sin(p - a)

)

AV =AX cosa cos ¢ + Ay cosa sing - A_sina (3)
=Ar sin(@ -a) + Ae cos(p -a)

A¢= -Ax sing + Ay cos ¢

Before going into the detail analysis, it is convenient to discuss
the expansions of the incident wave functions in terms of cylindrical
modes. This is done by expanding the factors, exp. (j kx x), cos ¢
exp. (j kxx), and sin ¢ exp. (ikxx) in a Fourier series of ¢, where

kx =k sin@_, k is the propagation constant of the medium, and
i= v~1. Itisknown fhcf7

. @ .m
exp. (i kxx) =L € i Jm (kx p) cos m¢ (4)
m=o
where m is an integer, € is the Neumann's number, i.e. €= ]

for m=0, €. = 2 for m >0, Jm is the first kind Bessel function of

order m , and x = p cos ¢. By utilizing Eq.(4), it can be shown

Q
cos ¢ exp.(fkx)=-1 ¢ "7 ! J 'k P cos mg (5)
m=0
® ]
sing exp.(jk x)==-1 e im¥ (m/k o) J_(k p)sinmo (6)
m=0



where the prime denotes the derivative of a function with respect to

the argument. Observe that when eo = 0, the right hand side of

Egs. (4) - (6) are reduced to unity, cos ¢ , and sin ¢, respectively.
This is the condition for nose on scattering. By virture of Egs. (4) - (6),
the incident plane waves can be resolved into hamonics of the azimuth

angle ¢.



3. ACCOUSTIC SCATTERING BY BODY OF REVOLUTION

The model considered in this section is a scalor plane wave
incident on a body of revolution. The scatterer is either soft or hard.

Let the incident plane wave function be normalized and given by

wi = exp. [i(kxx + kzz)] 7)

where kz =k cos 8. The first exponential can be expressed as in

Eq. (4). Physically, this means that the incident wave is the super-

ol

Aindrical medes, Therefore, the naint-matehing method
can be applied to cases where the incident wave can be resolved into
cylindrical modes. The scattered wave is governed by the Helmholtz's

equation
VAR | (8)

where V2 is the Laplacian operator. The boundary conditions for the

present problems are

q;' + =0 at the surface of a soft scatterer
and

i s
__aau W+ ¥)=0 at the surface of a hard scatterer

where —aaa is equivalent to the normal differentiation. Solutions of Eq. (8)
are known only in a few coordinate systems where the variables can be separated,
In general, the method of separation is not applicable. But in many cases, the
scattered wave can be expressed by the general solution of one of the separable
coordinate systems within practical acceptable approximation. Let the scattered

wave be expressed by the general solution of Eq. (8) in spherical coordinate

system with specification of outgoing waves, i.e.

s @ () m
y =L € hn (kr) P, (gos ) [Amn cosmp+ B sin m o] (9)

m
n

(o]
(o]



where A and an are constants determined by boundary conditions
hn(z) is the spherical Hankel function of the second kind, an is the
Legende function of the first kind. From Egs. (4) and (7), and the
boundary conditions, it can be seen that an =0 forall m and n;

and for each m,

©
.m ' . (2, o ™M v
i Jm(kX p) exp. (|kzz) + L Arnn hn (kr) Pn (cose)=0at ¢
n=m
for a soft scatterer, and
0 m . bt (2) m
To G Jm(kxp) exp.(ikzz) + L Amn hn (kr) Prl (cos@)]=0at c

n=m

for a hard scatterer, where ¢ denotes the meridian contour (the x-z plane
or the y-z plane) of the scatterer. The expansion coefficients Amn are
determined by Eqs. (10) or (11). The operator 3 of Eq. (11) may be

du
replaced by

0 siny 0
or + r Je

. . -6 . .
where cosy =0 - T. To apply the point-matching method 6, it is
assumed that only a finite num
Eq. (9) are necessary to retain for good approximation. The infinite

summations of Egs. (9) - (11) may then be replaced by I , where N
n=m
is an integer. Similar to the point-matching method for two~dimensional

problems, (N - m) points, namely: (r] , 9]) (r2 , 82), —————
eN —m) , are chosen around the meridian contour of the scatterer and at
these points Eqs. (10) and (11) are satisfied. A system of inhomogeneous
linear algebraic equations which can be solved for (N -m) expansion

coefficients Amn of each Eq. (10) and (11) is formed. That is

(10)

)



N

2 m . .
[ )2 hﬁ ) (kr) Pn (cos @) Amn= -|m Jm(kxp) exp. (]kzz)} oo (12)
n=m q
B=16
for a soft scatterer and 9
{lcosy D450 Y 8 ) l;l h D) p ™(cose) A
Y ar * r % nem n r n © mn

.m .
= =i J _(k_p)exp.(jk_z) }

m' x z r=r
0=10 (13)
q
r=
q

for a hard scatterer, where q=1, 2, ~--- (N - m), and Yq is the angle
between the radial vector and the normal at point (rq , eq). (See Fig. 2).

The expansion coefficients Amn can be obtained easily by a computer

using Eq. (12) or (13). The series of Eq. (4) can be truncated in practice.

Due to the asymptotic behaviour of the Bessel function, the series can be
truncated for m where Jm(kx pmax)< <1, or approximately M = kxpmax+6'
where Prnax is the maximum value of p of the scatterer. Therefore, in
practice, it is only necessary to solve a finite number of systems of equations.
Furthermore, one computer program is appli
equations. When all the Amn's of dominant contributions are found, the

scattered wave and the scattering properties are readily determined by

utilizing Eq. (9).



4, ELECTROMAGNETIC WAVES SCATTERED BY PERFECTLY CONDUCTING
BODIES

In the previous section, it is seen that the three-dimensional accoustic
problems can be reduced to the simple forms in the two-dimensional case if the
scatterer has rotational symmetry. Similar results for the three-dimensional
electromagnetic problems were achieved, though the formulation is more
complicated. The present analysis is also started by resolving the tangential
components of the incident wave into cylindrical modes by means of Egs. (4) - (6).
And the scattered fields are expressed in terms of the spherical solutions, The

TE and TM incident waves are considered separately as follows:
A. TE incident plane wave.

Considering that the incident plane wave is polarized with the electric
field perpendicular to the plane of incidence, then the incident wave function

may be written as
E'= § exp. Litk x + k_2)] (14)

Observe that this is transverse electric to z. In terms of cylindrical modes, the
tangential components of this incident field in the scatterer's coordinate system

are given by

. ©
E¢| = -exp. (ikzz) Zoem im + Jm‘ (kxp) cos me (15)
m=
i ® m+ 1
Ev = -exp. (ikzz) cosum)_::] € i (m/kx 0) Jm(kxp) sin m¢ (16)

where Egs. (3), (5) and (6) have been applied to Eq. (14). Since the scatterer
is not uniform in the z-direction, the scattered field can not be a pure TE
wave, but can be expressed by the superposition of TE and TM waves. A
more convenient way to obtain an expression for the scattered field is the

superposition of TE and TM_ waves in spherical coordinate system, where
r r



TEr and TMr denote the transverse electric ar the transverse magnetic
with respect to the r-direction, Conventionally, the TEr and TMr outgoing
waves are generated by constructing the magneti~ and electric vector potentials

respectively in the following forms:7

©
S A .
A =7 n)‘:_] an Gmn(r,e) sin mo (17)
n=m
S ®
F=% I b__ ZG__(r,8) cos mo (18)
g o omn
n=m
) m .
where G_ (r,8)=krh (kr) P_"(cosg). Thea 's and b 's are
mn n n mn mn

constants to be determined by boundary conditions, and Z is the intrinsic
impedance of the medium. The expansion coefficients a o and bmn are
of the same physical units due to the introduction of Z in Eq. (18) which
shows convenience in the latter applications. Since the plane of incidence
is the x-z plane, the choices of cos m¢ and sin m¢ are shown as in
Egs. (17) and (18).

With the assumed form of the magnetic and electric vector potential,
the r, 8, and ¢ components of the scattered electric field can be derived

7,8 Using the derived

OOKS, Using th xpressions for the r,

I

D

easily as shown in fex
@, and ¢ components in Eq. (3), it can be showr that the ¢ and v components

of the scattered electric field are given by

. aGmn 1 aGmn
E¢ =7 mz,n [ (=j/r sin®)m 7 T e bmn] cos m¢ (19)
5 | \ 82Gmn
E=Z %,n{ (-i/7)ln(n+ 1) sin@-o0 /) cos(e - a) 3% ]
(20)
a4 [cos(@® -a)/r sin] m Gmn bmn} sin m¢

10



where ¢ = = kr, and the limits of the summations are fhe same as those in
s. (17) and (18). The boundary conditions require E'+E°=0 and
EvI + EvS = 0 at the surface of the conducting body, it follows that

@ G i 1 9 G
L(=j/r sin@)m mn ™y ]

nzzm ¢ mn’ r 080 mn

. m+l
= exp.(jk,z)e " J 'k p)/Z

62(3

686

8

1 (-i/")n(n+1) sin(p - a}(G /t)+ cos(g - ) s

+ [cos(® - a)/r sinelm G

mn mn
. . 1
= exp.(|kzz) cosa e |m+ mJ (kxp)/kx pZ

at the meridian contour of the rotational symmetric body. Observe that
these two equations are valid for all m except that when m =o, the
last equation does not exist. As in accoustics, the series expressions for
k p )<<,

M( X" max
Hence, there are only a finite number of Eqs. (21) and (22) necessary

the incident waves can be truncated for M where J

in practical applications. Again, in order to utilize the point-matching

technique, the infinite summations of Egs. (19) ~ (22) are replaced by finite

summations with limits from n=mto N, where N is an integer. Since

Egs. (21) and (22) must be satisfied simultaneously, 2(N-m) points are

chosen along the meridian contour of the scatterer where these two equations

hold. A system of 2(N-m) simultaneous algebraic equations with 2(N-m)

unknowns for each m are formed:

mn a6 mn

N d Gmn ! ] Gmn
nlzng(-i/r sin@)m s C I Tl b ]

11

(21)

(22)



. mil.
= exp.(|kzz)€m |m+ J (kxp)/Z} .
q
0= eq
o B2G
T (/e D)sin(e - @) G /p + cos(6 - @) =5~ la
n=m mn" ¢t t ‘ mn

(23)

+ Llecos(0-0)/rsin 8ImG_ b }r=r,0=6 ,a=a
mn mn q q q

m+1

= [exp. (ikzz) cos &€ ] m Jm(kxp)/kpo ]r _

where (rc| ’ Sq) is a point at the meridian contour of the body, aq is the
angle o evaluated at the point (rq ’ eq), q=1,2,3, ..... 2(N - m)
for m #0;q=1,2, .... N, and Un =0 for m =0, Similarly,

these systems of equations represented by Eq. (23) can be solved numeri-
cally for the expansion coefficients a . and bmn by a computer without

difficulty. The program must run (M + 1) times,

w
==
<
5
o
Q.
)
3
=

v
Q

3
(i)
€
o]

<
(1]

The analysis of the scattering of a TM plane wave is quite similar
to that of a TE plane wave. The incident wave is polarized with the
electric field parallel to the plane of incidence. Let the normalized

electric field vectoral function be given by
i A o . . '
E' = (-X cos 90 +Zsin 60) exp. [|(kxx + kzz)] (24)

Using Eqs. (3) - (6), one obtains the tangential components in the

scatterer's coordinate system of the incident field such as
o]

. . m+1 _
E¢' = -Ccos 90 exp.(|kzz) by €m |m+ (m/kxp) Jm(kxp) sin m¢ (25)

m=1

12



w0

EVI = exp. (ikzz) Z_o Lj cos 60 cos aJm' (kxp) - sin 80 sin a Jm (kxp) ]°
m=

(26)

i € cos
. m
I m ¢

Again, it is convenient fo express the scattered fields by the superposition
of outgoing TEr and TMr waves in spherical coordinate system. As in
the TE case, these outgoing TEr and TMr waves can be derived from the

magnetic and electric vector potentials which are given by

S _ A
A" =T nz1:=o a Gmn cos m¢ (27)
n=m '
s e .
F ='r\m2__:] b ZG_ sinmg (28)
n=m

where the symbols are as previously given. Note that due to the difference

in polarization of the incident waves, the choices of cos m¢ and sin m¢

in Egs. (27) and (28) are different from those of Egs. (17) and (18). Following
the steps as stated in the TE case, from Eqs. (27) and (28), and utilizing

Eq. (3), one can derive the ¢ and v components of the scattered electric

fields which are given by

s . ° Gmn 1 aGmn .
E¢ =Zr§n Lj/r sin6) m 5t Gmn+—F—ae—bmn]smm¢ (29)
S G
e =2 % | (1/inlsin(8-a) n(n+1) Gmn/{;+cos(6-on)—5c—argl Ja__
- Llcos (B-a)/rsin 6] men bmn } cos m¢ (30)

13



The bou.ndary conditions are the same as before, i.e., Eqbi + E¢S =0

and Ev| + Evs =0 at the surface of the conducting body. The point-

matching technique is used to evaluate the expansion coefficients Amn and bmn'
The coefficient evaluation procedure is the same as in Section 4A, a system of
2(N-m) [N for m = 0] inhomogeneous algebraic equations with 2(N-m) [N for m = 0]
unknowns are formed for each m. They are

N oG 3G

. mn 1 mn
{nim [(z/r sin 8) m T Sn F T 3T bmn]

. .m+1
= cos 90 exp.(|kzz)m €m(|m+ /Z kxp) 3 (kxp) Jm(kxp) }r _r

f =

@
o) £

N # G 31
L L /D@0 00 +1) G/ +oos(0-0) o Ja

-[cos(8-0)/rsin6ImG b 1}

mn mn r=r

q
6==6

q
a=Q

q

. .m . 1 . . e
= {exp.(|kzz) i< [j cos 90 cosa ) (kxp) - smeo sinaJ_(k 0) 3} _

where (rq , Bq) is a point at the meridian contour of the body, qu, is

the angle a evaluated at the point (rq , eq), q=1,2, .... 2(N -m)

for m # 0; while q=1, 2, .... Nand bon =0 for m =0, Similarily,
Eq. (31) can be solved for amn's and bmn's by a computer and in practical

applications, only a finite number of m is considered.

14



5. NOSE ON SCATTERING

In the case of nose on scattering, i.e., 60 =0, the problems
are simpler. Under this condition, the right hand sides of Eqs. (4) -
(6) are reduced to 1, cos¢, and sin¢ respectively. Egs. (12), (13),
(23) and (31) are reduced to only one system of equations, i.e.,

m =0 for Egs. (12) and (13), m =1 for Egs. (23) and (31). Hence,
in each case, it is necessary to evaluate only one system of equations.

Note that in the electromagnetic scattering problem, two cases are

L

the same excepi with a phuse of 20 degrees difference in snace. Both
P Y H

9
cases are reducable to those formulated by Schultz et al.

15




6. THE SCATTERING CROSS-SECTIONS.

In accoustics, the normalized total scattered power can be
defined as

P o=/ |13 %40 (32)
at o)

where Q is the solid angle. Using the orthogonal relationships, of
the spherical harmonics, the integrations of Eq. (32) are easy to
perform and the total scattered power is given by

N, M

2
P o—dn s e |h@py)2 L amlo,
= m n

|2
2n+l (n-m) ! mn

(33)

n=m

At large distances, the factor lhn(z) (kr) | can be replaced by

1/kr. Therefore, the total scattered power at large distances

from the scatterer is inversely proportional to the square of the frequency.
In the scattering of electromagnetic waves, the scattered fields

can be determined by Egs. (17), (18) and (27), (28) for the TE and the

T™ cases, respectively. The expansion coefficients a . and bmn

are computed by the point matching method. For far field considerations,

it is convenient to express the scattered field in spherical components.

The ¢ components for both cases are given by Egs. (19) and (29),

respectively. The 6 component for the TE case is given by

. N M e
Ee = % Lz/in an
n=m
m=1

mn

acae

+ (1/rsinB) m bmn Gmn]sin m¢ (34)

N, M 26
>

L(Z/jr) Amn _B_éTme_n - (1/r sinB) bmn m Gmn ] cos m¢ - (35)

16



for the TM case. The r component is omitted since it is negligible
when compared with the 6 and ¢ components in the far field region.

The scattering cross-section in a particular direction (Bp ’ ¢>p) can be

defined by

2 s i 2
A6 , =4mR” |E'R, & , E
(0 0)=4mRE ER, 0, 0 )/E |

s 2 s 2 s 2
where E'R, 68 , =|E, (R, B8, +1E (R, 6,
e IER 8, 0) "= B (R &, 9 ) "+ IESR, &, 0]
and R is the distance between the observation point and the origin.
The total scattered power is given by
R2 2 2
=7 Jy (IE 1P+ 1E 1) d0 (36)

Substituting Eqs. (19) and (32), or (29) and (33) into Eq. (34), and

noting that the orthogonal relationships of the trigonometric functions and

dp ™ dp,"
j;ﬂ [d—'e‘ d—% + (m/sin6)? PPy ]sine de
2 1
= Zn¥i ((';tr:‘n))! n(n +1) én!.

yields,

N,M 2 2
Pp= @) /6) Do)/ @ne) )Lt ml/omm)t DUl 1Pe o 1)

n=m (37)

where the asymptotic values of the spherical Bessel functions

fim
c=eh O ="+ exp. (-ike) / ke

lim .

and r-—o ;—r_ [rhn(z) kr) 1= in exp. (=jkr)

17



[ H1)

have been used. Eq. (35) is valid for both the TE and the TM cases,
of course, the values of a and b are different. The total
mn mn
scattering cross section is defined as the ratio of the total scattered
power to the incident power density. Thus,
2 N/M 2
o, =(2rZ%) T (l/€m)[2n(n+1)(n+m)!/(2n+l)(n-m)!][Ic mnl +|bmn|

m=0
n=m

2

In thic farmulation, the expansion coefficients a__ and b __ are pro-
portional to 1/Zk, hence, the total scattering cross section is , in fact,

expressed in forms of ]/k2.

18

(38)
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7. EXAMPLE.

To demonstrate the accuracy of the point-matching method for
this application, the scattering of a plane wave by a conducting sphere will
be considered. The good agreement between the approximate solutions
and the exact answers shows that the boundary conditions are approximately
satisfied when applying the point-matching technique, ’

Consider the plane wave Ei = -x exp.(jkz) scattered by a perfectly
conducting sphere of radius a. Since 60 =0 and a=6, Eq. (31) is
reduced to a quite simpie form, in Tabie i, ihe cxpansion coefficients
a and bn , calculated by the point-matching method, are compared
with those of rigorous solutions for ka = 1. The electromagnetic field
satisifes the boundary conditions exactly at three points for the three-point
approximation, while the field satisfies the boundary conditions at four
points for the four-point approximation. The chosen points in these cal-
culations are r=a, 6=0, 90°, and 180° for the three-point approximation;
r=a, =0, 60°, 120°, and 180° for the four-point approximation. Note
that the points of 6 = 0° and 6 = 180° give the same algebraic equation. If
the point r =a, 6=0° is chosen, the solutions satisfy the boundary conditions
at the point r=a, 6= 180° automatically. Therefore, the three-point appro-

ximation has a system of four equations and the four-point approximation has a

chosen, the situation is the same as discussed previously. One should note
that degenerate equations may arise in other cases.
The exact solutions in Table | are obtained by assuming that the

magnetic and electric vector potentials for the scattered field are given by

S
A=%T a G cos¢ (39)
n=1
S ® .
F=%c b Z G, sing (40)
n=1
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respectively. The scattered field obtained from Eqs. (39) and (40) plus
the incident field satisfies the boundary conditions exactly at r=a.
The good agreements of the four-point approximation with the exact
solutions reveals that the boundary conditions are satisfied quite well

by the point-matching technique.

2]



8. DISCUSSION,

It was shown that the scattering by rotational symmetric bodies in
accoustics is quite similar to the two—dimensional problems as those discussed
by Yee5 and Mullin et a|.4 For each cylindrical mode of the incident wave,
a corresponding scattered field can be obtained by the point-matching method,
similar to the solution of the two-dimensional problems except the Hankel
functions are replaced by the spherica‘l Hankel functions. One can easily
convince himself that the validity of the point-matching method for each cylin-
drical mode is the same as those in the refeicnces (41 - (A1 That is, the
method works well and gives acceptable numerical results to bodies of smooth
meridian contour which are not gross perturbations from the circulc:r,4 and af
low frequencies, the boundary conditions are satisfied around the meridian
contour of the body as shown in Figs. 5 and 6 of references [5]. Obviously,
this method is not applicable to needles or dishes. Of course, all these
statements for the applicability of the point-matching method are valid when
applied to the superposition of the cylindrical modes, i.e. to the scattering
by rotational symmetric bodies.

Returning to the electromagnetic problems now, for each cylindrical
mode of the incident wave, the same situation arises except that two tangen-
tial components of the electric field satisfy the boundary condition simultane -
ously. The applicability of the point-matching method for each component
is the same as in accoustics. It can then be concluded that the same statements
for the applicability of the method are valid for scattering of electromagnetic

waves by perfectly conducting bodies of rotational symmetry.
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Fig. 1 - The scatterer and the incident wave

in the cartesian coordinate system.
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Fig. 2 - (a) The unit vectors v and ¢ of the scatterer's coordinate

system and the cartesian coordinate system,

(b) The unit vectors u and v of the scatterer's coordinate
coordinate system and the cartesian coordinate system

[A rotational view of (a)].
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